
GitOps
Cloud-native Continuous

Deployment

Quickstart with
Kubernetes

Florian Beetz · Anja Kammer · Simon Harrer

GitOps

Cloud-native Continuous Deployment

Florian Beetz
Anja Kammer
Dr. Simon Harrer

ISBN 978-3-9821126-8-8
innoQ Deutschland GmbH
Krischerstraße 100 · 40789 Monheim am Rhein · Germany
Phone +49 2173 33660 · WWW.INNOQ.COM

Layout: Tammo van Lessen with X ELATEX
Design: Sonja Scheungrab
Print: Pinsker Druck und Medien GmbH, Mainburg, Germany

GitOps – Cloud-native Continuous Deployment
Published by innoQ Deutschland GmbH
1st Edition · 2021-07-15

Copyright © 2021 Florian Beetz, Anja Kammer, and Dr. Simon Harrer

Contents
Acknowledgments 1

Welcome 3

What is GitOps? 5

Why should I use GitOps? 7
Deploy Faster and More Often . 7
Easy and Fast Error Recovery . 7
Secure Deployments . 8
Self-documenting Deployments . 8

How does GitOps work? 9
Environment Repository . 9
Push-based vs. Pull-based Deployments . 9
Working with Multiple Applications and Environments 13
Preview Environments . 14
Trunk-based Development vs. Pull Requests . 15

GitOps vs. … 17
DevOps . 17
BizOps . 17
NoOps . 17
CIOps . 18
SVNOps . 18

FAQ 19

GitOps Quickstart with the Flux Operator on Kubernetes 25
Step 1: Application Repository . 27
Step 2: Environment Repository . 28
Step 3: Continuous Delivery Pipeline with GitHub Actions 30
Step 4: Flux Installation . 32
Step 5: Pull-based Deployment . 35

The Future of GitOps 41

Resources 43

About the Authors 47

Acknowledgments
This book has a bit of a history. Back in 2019, Simon hosted a seminar for master
students in computer science on all things Kubernetes at the University of Bamberg,
Germany. Florian participated in the seminar and choose the topic of evaluating
whether GitOps is an evolution of DevOps. After Florian handed in his great seminar
thesis and gave his talk on his topic within the seminar, it became clear Simon and
Florian wanted to share what they learned so far. That’s when they began to write
up everything for their website gitops.tech1. At first, Anja just wanted to do a review
but then joined our effort in 2020, and we began our journey towards this book using
the material from the website as a starting point. But without that seminar in 2019,
without that Florian choosing GitOps as the topic of his seminar thesis, this book
would not exist today. So thank you, Prof. Dr. Guido Wirtz for allowing this seminar
to happen!

We’d also like to thank the many people that gave honest feedback, critic, and even
praise for early versions of this book (in alphabetical order): Linus Dietz, Vincenzo
Ferme, Dr. Michael Oberparleiter, Alexis Richardson, Gregor Riegler, Hans-Christian
Sperker, Dr. Andreas Schönberger, Tammo van Lessen, and Daniel Westheide.

And last but not least, we’d like to thank Sonja Scheungrab and Susanne Kayser for the
great cover work.

1https://gitops.tech

1

https://gitops.tech

Welcome
This book is our management summary of GitOps. It’s our understanding of what
GitOps is, why we like it so much, and how it works. It covers a comparison of GitOps
to various other terms like DevOps or NoOps and aims to answer the typical questions
when being first confronted with GitOps and one asks when diving deeper into the
world of cloud-native continuous deployment. If you want to get yours hands dirty
straightaway, there is a tutorial waiting for you in the back pages.

Our main goal is to get you up to speed in discussions about GitOps, and if you follow
the tutorial you’ll also get a feel for it. That’s why this book is really for a wide range
of people who build software today: from software engineer to team manager, from
product owner to site reliability engineer. We think it helps to evaluate whether
GitOps might help you in your current project (or not) and how you would start
applying it in your setting if you think it can move you forward.

The book, however, is not an absolute truth, no bible of any sort. Don’t follow it blindly
hoping for some miracle. As any advice, take it with a grain of salt as it might not be
the solution for you right now. With this in mind, happy reading!

The field of GitOps is moving fast. In such a fast moving field like GitOps, a
writing such as a book like ours can become outdated quickly. That’s why we
need your help. If you’ve found something that’s out of date, think that we
should include some new tools or concepts, or just found a typo, please tell us
by creating an issue in the accompanying GitHub repositorya. It’s, however, not
just about keeping the content relevant, but to build up a community to discuss
ideas aroundGitOps and perhaps find even betterways to expresswhatGitOps
really is all about. So feel free to start a discussionb anytime.
ahttps://github.com/gitops-tech/book
bhttps://github.com/gitops-tech/book/discussions

3

https://github.com/gitops-tech/book
https://github.com/gitops-tech/book/discussions

What is GitOps?
GitOps is a way of implementing Continuous Deployment for cloud native applica-
tions, coined by Weaveworks in 20172. It focuses on a developer-centric experience
when operating infrastructure, by using tools developers are already familiar with,
such as Git, Infrastructure as Code, and Continuous Integration.

The core idea of GitOps is having a Git repository that contains declarative descrip-
tions of the infrastructure currently desired in the target environment and an auto-
mated process to make the environment match the described state in the repository.
If you want to deploy a new application or update an existing one, you only need to
update the repository— an automated process handles everything else. It’s like having
cruise control for managing your applications.

GitOps: versioned CI/CD on top of declarative infrastructure.
Stop scripting and start shipping.

Kelsey Hightower3

2https://www.weave.works/technologies/gitops/
3https://twitter.com/kelseyhightower/status/953638870888849408

5

https://www.weave.works/technologies/gitops/
https://twitter.com/kelseyhightower/status/953638870888849408

Why should I use GitOps?
We think GitOps has several major advantages although it’s no silver bullet that works
in every case. It allows you to deploy faster and more often, gives you easy and fast
error recovery for free, and makes deployments more secure and self-documenting.

Deploy Faster andMore Often
Probably every Continuous Deployment technology promises to make deploying
faster and allows you to deploy more often. The uniqueness of GitOps is that you
don’t have to adopt new tools for deploying your application while developing.
Everything happens by utilizing the version control system you already use for
developing the application.

When we say “high velocity” we mean that every product team
can safely ship updates many times a day — deploy instantly,
observe the results in real time, and use this feedback to roll

forward or back.

Weaveworks4

Easy and Fast Error Recovery
Oh no! Your production environment is down! With GitOps you have a complete
history of how your environment changed over time. This makes error recovery as
easy as issuing a git revert and watching your environment being restored.

The Git record is then not just an audit log but also a
transaction log. You can roll back & forth to any snapshot.

Alexis Richardson5

4https://www.weave.works/blog/gitops-high-velocity-cicd-for-kubernetes
5https://twitter.com/monadic/status/1002502644798238721

7

https://www.weave.works/blog/gitops-high-velocity-cicd-for-kubernetes
https://twitter.com/monadic/status/1002502644798238721

Secure Deployments
GitOps allows you to manage deployments completely from inside your environment.
For that, your environment only needs access to your repository and image registry.
That’s it. You don’t have to give your developers direct access to the environment.

kubectl is the new ssh. Limit access and only use it for
deployments when better tooling is not available.

Kelsey Hightower6

Self-documenting Deployments
Have you ever SSH’d into a server and wondered what’s running there? With GitOps,
every change to any environmentmust happen through the repository. You can always
check out the default branch and get a complete description of what is deployed where
plus the complete history of every change ever made to the system.

Better yet, using Git to store complete descriptions of your deployed infrastructure
allows everybody in your team to check out its evolution over time. With great commit
messages everybody can reproduce the thought process of evolving infrastructure and
find examples of how to set up new systems, too.

GitOps is the best thing since configuration as code. Git
changed how we collaborate, but declarative configuration is
the key to dealing with infrastructure at scale, and sets the

stage for the next generation of management tools.

Kelsey Hightower7

6https://twitter.com/kelseyhightower/status/1070413458045202433
7https://twitter.com/kelseyhightower/status/1164192321891528704

8

https://twitter.com/kelseyhightower/status/1070413458045202433
https://twitter.com/kelseyhightower/status/1164192321891528704

How does GitOps work?
After telling you what GitOps is and why we like it so much, we’d like to explain
how it actually works. Most of the core concepts stem from the Guide to GitOps8

by Weaveworks, focused on leveraging Weaveworks products on Kubernetes.

Environment Repository
GitOps organizes the deployment process around code repositories as the central
element. There are at least two repositories: the application repository and the
environment repository. The application repository contains the source code of the
application and, optionally, a Dockerfile for building a container. The environment
repository contains all deployment manifests of the currently desired infrastructure
for the target environment. It describes what applications and infrastructural services
(i.e., message broker, service mesh, monitoring tool) should run with what configura-
tion and version. You could also leave the application deployment manifests in the
application repository. We are discussing the advantages and disadvantages of this
approach in the FAQ section: Where should I put deployment manifests?

Push-based vs. Pull-based Deployments
There are two ways to implement the deployment strategy for GitOps: push-based
and pull-based deployments. They differ in how you make sure that the target en-
vironment actually resembles the desired infrastructure. If possible, the pull-based
approach should be preferred as it is considered the more secure and, thus, better
practice to implement GitOps.

8https://www.weave.works/technologies/gitops/

9

https://www.weave.works/technologies/gitops/

Push-based Deployments

The push-based deployment strategy is implemented by popular CI/CD tools such as
Jenkins9, CircleCI10, or Travis CI11 — you may know it as CIOps. The source code of
the application lives inside the application repository alongwith theKubernetes YAML
files needed to deploy the app. Whenever a developer updates the application code,
the CI/CD system triggers the build pipeline, which builds the container images and
updates the environment repository with new deployment manifests. It’s common to
store templates of the deploymentmanifests in the application repository, so the build
pipeline can use these templates to generate the actual manifests, eventually stored in
the environment repository.

triggers

Application
Repository

Environment
Repository

Image
Registry

updates pushes images
Build Pipeline

writes

triggers

deploys

Deployment
Pipeline

Deployment Environment

Push-based Deployments

Changes to the environment repository trigger the deployment pipeline. This pipeline
is responsible for applying all manifests in the environment repository to the in-
frastructure. With this approach it is indispensable to provide credentials to the
deployment environment, which means that the pipeline has god-mode enabled. A

9https://jenkins.io/
10https://circleci.com/
11https://travis-ci.org/

10

https://jenkins.io/
https://circleci.com/
https://travis-ci.org/

compromised CI/CD system could act as a gateway to your target environment, with
all ssh keys and secrets provided on a silver platter. In some use cases a push-
based deployment is inevitable when running an automated provisioning of cloud
infrastructure. In such cases, it is strongly recommended using the configurable
authorization system of the cloud provider to restrict deployment permissions.

Also, to keep in mind that using this approach, the deployment pipeline is triggered
only by changes to the environment repository. The systemwon’t notice any deviation
from the environment and its desired state automatically. Consequently, you might
want to add some form of monitoring so that someone can intervene in case the
environment doesn’t match with the descriptions in the environment repository.

Want to see how to set it up? Check out Google’s Tutorial12 on how to set up push-
based deployments with their Cloud Builds and GKE.

Pull-based Deployments

The pull-based deployment strategy uses the same concepts as the push-based variant
but differs in how the deployment pipeline works. Traditional CI/CD pipelines are
triggered by an external event, for example when new code is pushed to an application
repository. With the pull-based deployment approach, the operator is introduced. It
takes control over the pipeline by continuously comparing the desired state as defined
in the environment repository with the actual state deployed in the infrastructure.
Whenever the operator notices any differences, it updates the infrastructure to match
the descriptions in the environment repository. Additionally, the image registry could
be monitored to find new versions of images to deploy — but this depends on your
Continuous Delivery workflow.

Just like the push-based deployment, this variant updates the environment whenever
the environment repository changes. However, with a respective operator, changes
can also be noticed in the other direction. Whenever the deployed infrastructure
changes in any way not described in the environment repository, these changes can
be rolled back to the respective configuration in the environment repository.

12https://cloud.google.com/kubernetes-engine/docs/tutorials/gitops-cloud-build

11

https://cloud.google.com/kubernetes-engine/docs/tutorials/gitops-cloud-build

triggers

Application
Repository

Environment
Repository

Image
Registry

updates pushes images
Build Pipeline

writes

observes

deploysobserves
Operator

Deployment

Environm
ent

Pull-based Deployments

We generally recommend preventing manual changes to a production environment,
since such undocumented alterations are known to be error prone and tricky to debug.
By treating the environment repository as the single source of truth and preventing
direct changes to the cluster, all changes become traceable in the Git log.

This is discussed quite controversially. The folks at Codefresh believe that this is
a huge disadvantage13 since dynamic changes of resources triggered by controllers
are being blocked to be dynamic. Think of auto-scaling and resource optimization
controllers which optimize workloads’ scaling properties according to their demand.
Fortunately, platforms such as Kubernetes allow discarding further information about
dynamic parts of the configuration so such optimizations are not impactedwhen using
static environment descriptions, where they are needed. Nevertheless, there is still
room for improvement to tackle this issue.

Most operators also support sending emails or Slack notifications if they can’t bring
the environment to the desired state for any reason. For example, if they can’t pull a
container image. Additionally, you should probably set upmonitoring for the operator
itself, as there is no longer any automated deployment process without it.

13https://codefresh.io/gitops-guide/

12

https://codefresh.io/gitops-guide/

The operator should always live in the same environment or cluster as the application
to be deployed. This prevents the god-mode of the push-based approach, where
credentials for doing deployments are known by the CI/CD pipeline. When the actual
deploying instance lives inside the very same environment, no credentials need to
be exposed to external services. The authorization mechanism of the deployment
platform in use can be utilized to restrict the permissions on performing deployments.
This has a huge impact in terms of security. When using Kubernetes, RBAC configura-
tions and service accounts can be utilized.

Working with Multiple Applications and
Environments
Working with just one application repository and only one deployment environment
is certainly not realistic for most systems. When using a microservice architecture,
you probably want to keep each service in its own repository.

GitOps can also handle this use case. You can always just set up multiple build
pipelines that lead to an update in the environment repository. From there on the
regular automated GitOps workflow kicks in and deploys all parts of the application.

triggers

Inventory
Microservice

Environment
Repository

updates
Build Pipeline

triggers on
branch staging

deploys

Deployment
Pipeline

DeploymentStaging
Environment

triggers

Payment
Microservice

updates
Build Pipeline

triggers on
branch master

deploys

Deployment
Pipeline

Deployment Production
Environment

Multiple applications and environments

13

Managing multiple environments with GitOps can be done in several ways. You can
think of one configuration repository for each environment: Dev, Staging, Production.
Another possibility is to only maintain one repository for all environments with dif-
ferent directories for each environment. You could also split the environments with
branches in one environment repository. This way, a promotion is done by merging
changes from one environment branch to another. For example, Dev environment
changes can be propagated to the Staging environment by pull request, where the
environment branch for Dev is still remaining and, thus, long-running. Such an
approach ensures an audit-friendly and transparent process at one place with Git tools
and peer review. You can set up the operator or the deployment pipeline to react to
changes on one branch by deploying to the production environment and another to
deploy to staging.

Preview Environments
Alongside the term GitOps another special practice emerged: preview environments,
or sometimes also known as preview deployments. Although GitOps and preview
environments share some concepts they are quite different in nature.

Let’s say your team is currently working on introducing a new feature. You’re almost
finished implementing this feature, but you want to try it out in a production-like
environment. Also, it is crucial for you to get feedback from someone in the UX and
QA team before the feature goes into production. Tired of waiting for the sandbox
environment provided by your ops team? That’s where preview environments come
in.

With preview environments, each code change automatically results in a deployment
after all automated tests have passed. You get a ready-to-use but short-living
production-like deployment to gather feedback early. Hightower et al. suggest
deploying and testing an application during development for every commit.
(Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up and Running: Dive Into
the Future of Infrastructure. Sebastopol: O’Reilly, p. 10)

Again, there are two forms of preview environments: branch-based and pull request-
based. The branch-based preview environments tie their lifecycle and unique URL

14

to a branch, whereas the pull request-based ones to a pull request. The creation of a
branch or pull request creates a new preview environment. The update of a branch
or pull request updates their corresponding preview environment, and the deletion
destroys them. Gitlab-CI supports branch-based preview environments with their
‘Review Apps’14 and Jenkins X supports pull request-based preview environments with
their very own ‘preview environments’15. The pull request-based approach, however,
has a great advantage: there’s a place to put peer reviews and notifications. For
example, after every successful deployment of a preview environment, Jenkins X
adds a comment to the pull request. But be aware that developers make mistakes.
It’s possible that with preview environments, mistakes such as memory leaks are
automatically deployed in your cluster. So be sure to add the possibility to limit or
delete a deployment explicitly if it runs havoc.

Trunk-based Development vs. Pull Requests
Weaveworks advocates for operation by pull request16. Any operational change, includ-
ing every deployment, is a result of a pull request gettingmerged. As the rollout of such
a change is automated, the onboarding of new developers only requires permission to
the respective Git repository and permission to merge pull requests. This approach
ensures peer review and audit trails to make changes observable and accountable.
Tools such as Snyk and Jenkins X use pull requests to propose configuration changes.
As a vulnerability scanner, Snyk proposes mitigation of dependency vulnerabilities
in this way to be reviewed and merged by a repository maintainer. Jenkins X is a
CI/CD solution that implements GitOps in a highly opinionated manner. It uses pull
requests to change deployment configurations and to trigger the deployment pipeline.
After a successful deployment, Jenkins X automatically merges the corresponding pull
request.

But how does this workflow fit into the common practice of trunk-based development
for truly living Continuous Integration, preached by highly valued opinionators such
as Jez Humble and Martin Fowler?

14https://docs.gitlab.com/ee/ci/review_apps
15https://jenkins-x.io/v3/admin/guides/preview-environments
16https://www.weave.works/blog/gitops-operations-by-pull-request

15

https://docs.gitlab.com/ee/ci/review_apps
https://jenkins-x.io/v3/admin/guides/preview-environments
https://www.weave.works/blog/gitops-operations-by-pull-request

There is a common misunderstanding when talking about trunk-based development.
Branches aren’t always evil. As long as the used branch is short-lived and maintained
by one person only17, branches are considered fine. So we can still do trunk-based
development and utilize the power of pull requests for code review and build automa-
tion purposes. Even better, we can run our automated tests early on18 to find issues
much faster. This allows taking advantage of both, trunk-based development and pull
requests in Git workflows.

17https://trunkbaseddevelopment.com/#scaled-trunk-based-development
18https://trunkbaseddevelopment.com/continuous-integration/#ci-pre-or-post-commit

16

https://trunkbaseddevelopment.com/#scaled-trunk-based-development
https://trunkbaseddevelopment.com/continuous-integration/#ci-pre-or-post-commit

GitOps vs. …
Naming is hard – we all know that. With the rise of a new term like GitOps, you
typically wonder whether it’s something new or simply old wine in new bottles. We
want to show you that GitOps is new wine in recycled bottles (we do care about the
environment).

DevOps
DevOps is all about the cultural change in an organization to make people work
better together. GitOps, on the other side, is a technique to implement Continuous
Deployment. Although DevOps and GitOps share principles like automation and self-
serviced infrastructure, comparing them doesn’t really make sense. That being said,
those shared principles certainly make it easier to adopt a GitOps workflow when you
are already actively employing DevOps techniques.

BizOps
BizOps can be seen as another evolution of DevOps, namely, a cultural change with
the business outcome as the primary measure of success as described in the BizOps
Manifesto19. To some extent, DevOps already includes part of BizOps becauseDevOps
stems from the leanmovement and, thus, was nevermeant to only optimize the collab-
oration between developers and operations. The goal of DevOps was also to promote
cross-functional teams and empathy across all departments of an organization while
building software. Putting BizOps into perspective, we can say that both, GitOps and
DevOps, are practices that can help achieve a better business outcome when applied
pragmatically, and, therefore, can be seen as drivers for teams adopting BizOps.

NoOps
NoOps is all about extensive automation so that there’s little to no manual operations
work left to do. You can use GitOps to implement NoOps, but it doesn’t automatically

19https://www.bizopsmanifesto.org/

17

https://www.bizopsmanifesto.org/

make all operations tasks obsolete. If you are using cloud resources anyway, GitOps
can be used to automate those. Typically, however, some part of the infrastructure
like the network configuration, or the Kubernetes cluster you use is managed centrally
by some operations team, and not by yourself. So operations never disappear magi-
cally.

CIOps
Your usual CI/CD pipeline builds an application, runs the tests, and, as a last step,
deploys it. It’s so common that Ilya Dmitrichenko from Weaveworks came up with a
name20 for it: CIOps. Basically every CI/CD system supports this flow natively.

Although CIOps is easy to set up, it has its limitations. For one, the CI/CD system
needs to know credentials for the target environment. Furthermore, every application
needs its ownpipeline and there’s no central place to see the deployment configuration
for the whole system.

You could summarize CIOps as a technique that generally follows the GitOps push-
based deployment strategy without making use of an environment repository.

SVNOps
Is there even SVNOps? In a way, yes. In principle, you can use any version control
system youwant to implement a GitOps workflow for. One of the core ideas of GitOps
is letting developers use the tools they are familiar with to operate the infrastructure.
If you prefer SVN over Git, that’s cool! However, youmay need to put more effort into
finding tools that work for you or even write your own. All available operators only
work with Git repositories — sorry!

20https://www.weave.works/blog/kubernetes-anti-patterns-let-s-do-gitops-not-ciops

18

https://www.weave.works/blog/kubernetes-anti-patterns-let-s-do-gitops-not-ciops

FAQ
Is my project ready for GitOps?

Most likely: Yes! The cool thing about GitOps is that you don’t need to write any code
differently. What you need to get started is infrastructure that can be managed with
declarative Infrastructure as Code tools.

How do I integrate GitOps into an existing CI/CD pipeline?

You are probably following the CIOps approach, where you build, test, and deploy
your application in a push-based fashion in a single CI/CD pipeline. Fear not, you can
gradually transition to a pull-based GitOps workflow in a few steps.

Normally, the deployment configurations are part of the application repository. So at
first, you need to separate the deployment configuration from the application itself,
hence, move them to the separate environment repository. Now, you need to move
the CD part of the CI/CD pipeline from the application repository to the environment
repository. The CI pipeline of the application repository should only run the tests,
build the container image, and push the image to the container registry. The CD
pipeline of the environment repository should only deploy the application.

However, somehow you need to set up a trigger for the CD pipeline to run. There
are various possibilities to do this. You can do this manually through a user-triggered
button click or in some automated form; for example, the CI pipeline triggers the CD
pipeline when it’s done. All of them are fine, just choose the onemost suited for you.

You might wonder how the deployment manifests are changed to reflect a new con-
tainer image version tag. You could do this manually in the deployment manifest,
which then triggers the CD pipeline. But if you are truly doing Continuous Deploy-
ment, you might want to automate that, as it is only changing one property in a
manifest. Nevertheless, if some breaking changes of the infrastructure configuration
needs to be applied, you must do that over in the environment repository manually.

Congratulations, you do now have a push-based deployment strategy with an environ-
ment repository. You are, however, only half way there.

19

Conceptually, you now need to move the steps to deploy the application from the
CD pipeline that’s living outside our target environment into our target environment.
The most straight-forward approach would be to literally move the CD pipeline into
your target environment and set up an event-based trigger on pushes to the environ-
ment repository. If you’re using Kubernetes you can use one of the available GitOps
operators (e.g., Flux or Argo CD) available that do the same thing. In that case,
the GitOps operator observes the environment repository and starts the deployment
process when it detects a change.

I don’t use Kubernetes. Can I still use GitOps?

Yes! GitOps is not limited to Kubernetes. In principle, you can use any infrastructure
that can be observed, described declaratively, and has Infrastructure as Code tools
available. However, currently most operators for pull-based GitOps are implemented
with Kubernetes in mind.

Is GitOps just versioned Infrastructure as Code?

No. Declarative Infrastructure as Code plays a huge role for implementing GitOps,
but it’s not just that. GitOps takes the whole ecosystem and tooling around Git and
applies it to infrastructure. With that, you gain all the benefits of code reviews, pull
requests, and comments on changes for your infrastructure.

However, the biggest difference is the GitOps Operator, which lives in the target
environment to deploy your applications securely. ThoseContinuousDeployment sys-
tems also guarantee that the currently desired state of the infrastructure is deployed
in the production environment.

How to get secrets into the environment without storing them
in Git?

First of all, never store secrets in plain text in Git! Never!

That being said, you could have secrets created within the environment. Such secrets
never leave the environment. They stay unknown to everyone except the applications
that need them. For example, you could provision a database within the environment

20

and give the credentials only to the applications interacting with the database. Use
secret management systems for this such as HashiCorp’s Vault21.

Another approach makes use of a public/private key pair. First, you need to add
the private key to the environment. Or more realistically, have someone from your
dedicated ops team add the private key. Next, you can encrypt your secrets with your
public key and add them to the environment repository by yourself. The environment
can decrypt those secrets using the private key when necessary. There’s tool support
for such sealed secrets22 in the Kubernetes ecosystem.

How does ‘Operations by Pull Request’ comply to Continuous
Deployment?

We know what you are thinking. These people don’t know the difference between
Continuous Delivery and Continuous Deployment. If they knew, they would see that
‘Operations by Pull Request’ introduces a quality gate to every deployment, so it cannot
be Continuous Deployment.

Yes, we know that! And it is a wonderful example on how flexible the GitOps concept
can be! Let’s say you are doing automatic deployments straight after your CI Pipeline
turns green — without any manual intervention. You can totally do that with GitOps,
since pull requests can be created and closed automatically over APIs without any
manual approval. Just make sure to run your linting and infrastructure tests on every
pull request of the environment repository, too, so you are safe to deploy automatically
after closing that pull request with a merge. If you are leveraging Kubernetes for your
deployments, we recommend using KinD23 to automatically test your roll-outs before
actually going to production.

How does GitOps handle DEV to PROD propagation?

GitOps doesn’t provide a solution to promote changes from one stage to the next
one. We recommend using only a single environment and avoiding stage propagation
altogether. If you really needmultiple stages (e.g., Dev, Staging, Production, etc.) with

21https://www.vaultproject.io/
22https://github.com/bitnami-labs/sealed-secrets
23https://kind.sigs.k8s.io/

21

https://www.vaultproject.io/
https://github.com/bitnami-labs/sealed-secrets
https://kind.sigs.k8s.io/

a deployment environment for each, you could handle it by integrating changes from
one stage to another using branches and merges. This also ensures a robust propaga-
tion process where it is transparent which state is deployed to which environment.

How do I trigger deployments from image registry push events?

If you leverage image registry events to update applications in your target environment
update the deployment configurations in the environment repository accordingly.
Please, don’t bypass the repository and automatically update the new image directly in
the target environment. Beware, we do GitOps to have full control and observability
using the single source of truth — the environment repository, so version pinning is
inevitable to achieve this. Those changes to the environment repository trigger the
GitOps Operator to perform a new deployment, and the usual workflow kicks in.

Where should I put deployment manifests?

There are tools that allow the placement of manifest files inside the environment
repository. The advantage of this is that infrastructure files are all in one place and can
be reviewed by a dedicated platform team one pull request at a time. The disadvantage
is, however, that you separate things that usually should be versioned together in one
place.

An alternative approach is that the environment repository only collects a description
of the target environment dependencies (aka umbrella manifest). This description
acts as a link between your application repository and the environment repository,
so the deployment operator knows where the deployment manifests are located to
watch for. The downside of this approach is that you have commits (ideally automated
ones) laying around in your repositories’ Git history that change the desired version
of your application in the respecting manifest. If you automate this as recommended,
you need to deal with regularly pulling the current state of you repo, even if you are
working alone on your project. This inconvenience can be prevented by storing your
deployment manifests in a different place such as an object store. But by doing so you
lose the versioning of your code together with your manifests changes that you would
lose anyway if your manifests live in the environment repository in the first place.

22

I use Helm. Can I do GitOps then?

Absolutely! Every GitOps tooling explicitly supports Helm. Alternatively, you could
render Kubernetes manifests out of your charts with the Helm CLI tool. So no reason
to worry!

Should I hire GitOps engineers for my team now?

No! There are no GitOps engineers. GitOps is not a role (and neither is DevOps).
GitOps is a set of practices. You can look for a developerwho has experience practicing
GitOps — or simply let your developers try out those practices.

23

GitOps Quickstart with the Flux
Operator on Kubernetes
In this quickstart tutorial, we’ll show you how to set up a pull-based GitOps workflow.
We’ll be using Flux24, a Kubernetes-native GitOps operator developed byWeaveworks
that comes with extensive documentation25. All code we use can be found in full on
GitHub26. So if you feel stuck, just head over there to see the final result.

Prerequisites

To follow the tutorial, you’ll need

• a GitHub account for two Git repositories and for running GitHubWorkflows with
Actions27,

• a container registry for reading and writing container images,
• and a local Kubernetes cluster to run both, the GitOps operator and the application

itself.

For the local Kubernetes cluster, we recommend using KinD28, but Minikube29, or
Microk8s30 is likewise well. We know that there are also Kubernetes clusters from the
cloud computing providers like Google, Microsoft, or Amazon. For the sake of this
tutorial, however, a local installation of Kubernetes suffices.

For the container registry, we recommend Docker Hub31. A free account at Docker
Hub is more than enough for the sake of this tutorial. When you read this, the
GitHub container registry might already be out of beta and a more convenient choice,
though.

24https://www.weave.works/oss/flux
25https://toolkit.fluxcd.io/get-started/
26https://github.com/gitops-tech
27https://github.com/features/actions
28https://kind.sigs.k8s.io/
29https://minikube.sigs.k8s.io/docs/start/
30https://microk8s.io/
31https://hub.docker.com/

25

https://www.weave.works/oss/flux
https://toolkit.fluxcd.io/get-started/
https://github.com/gitops-tech
https://github.com/features/actions
https://kind.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/
https://microk8s.io/
https://hub.docker.com/

Big Picture

Okay, let’s have a closer look at what we want to achieve. There are five major steps
as shown in the figure below.

triggers

example-
application

example-
environment

Image
Registry

create
pull request pushes images

GitHub Action

observes

deploysobserves

 Flux Operator

Deployment

Environm
ent

1

2

3

4

5

Our five steps to set up pull-based GitOps with Flux

First, we want to have an application repository for our example-application our
developers can work on. Second, we want to have an environment repository for our
infrastructure manifests. Third, we need to set up a GitHub Workflow to update the
applications deploymentmanifest inside the environment repository via a pull request.
Fourth, we need to deploy Flux to Kubernetes so that it observes the environment
repository. And fifth, we want to kickstart a deployment via Flux as our GitOps
Operator.

26

Step 1: Application Repository
The first step is setting up the application repository. We host our application repos-
itory at GitHub. The example application we’ll be using in this tutorial is a simple
web application written in Go that responds to requests with “Hello World”. We cre-
atively name the application repository example-application and add the following
main.go and Dockerfile to it.

package main

import (
"fmt"
"log"
"net/http"

)

func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

fmt.Fprintln(w, "Hello World.")
})
log.Fatalf("error: %s", http.ListenAndServe(":8080", nil))

}

main.go

FROM golang:1.13 as builder
ENV CGO_ENABLED=0
WORKDIR /app
COPY . /app/
RUN go build -o go-app

FROM scratch
ENTRYPOINT ["/go-app"]
COPY --from=builder /app/go-app /

Dockerfile

After you’ve created those files, your application repository should look like this.

.
├── Dockerfile
└── main.go

Directory structure of the application repository

27

Step 2: Environment Repository
Let’s create the environment repository, we name it example-environment. See,
naming can be easy sometimes. Next, we create a new directory named applications
and place a subdirectory in it called example-application, the name of the appli-
cation repository. This is the place where we put the Kubernetes manifests for our
application.

Instead of placing the plain Kubernetes manifests in the environment repository, we
could have used Helm or Kustomize as well. For simplicity we stick to the standard
Kubernetes manifest format here.

apiVersion: apps/v1
kind: Deployment
metadata:

name: example-application
spec:

replicas: 1
selector:

matchLabels:
app: example-application

template:
metadata:
labels:

app: example-application
spec:

containers:
- name: example-application

image: <image-name>:<tag>
ports:
- containerPort: 8080

applications/example-application/deployment.yaml

apiVersion: v1
kind: Service
metadata:

name: example-application
labels:

app: example-application
spec:

type: ClusterIP
selector:

app: example-application

28

ports:
- port: 8080

applications/example-application/service.yaml

After you’ve created those files, your environment repository should look like this.

.
└── applications
 └── example-application
 ├── deployment.yaml
 └── service.yaml

Directory structure of the environment repository

29

Step 3: Continuous Delivery Pipeline with
GitHub Actions
The job of our Continuous Delivery pipeline is straightforward: On every release in
the example-application repository, build the container image, push the container
image to the container registry, and create a pull request to update the deployment
manifests to the new container image in the example-environment repository. We
plan to automate all of this through a GitHub Workflow.

Instead of writing this from scratch, copy the .github/workflows/newRelease.yaml
workflow file from our example application repository32 in yours. GitHub automati-
cally detects all workflows in the folder .github/workflows. This workflow runs two
jobs on every new release: the build and the release job.

The build job creates the container image using the Dockerfile and pushes it into
the default container registry, in this case Docker Hub. The job, however, needs
credentials to push a container image to the registry. That’s why we need to create
two secrets in the GitHub example-application repository settings:

• REGISTRY_USER is the username you use at Docker Hub
• REGISTRY_TOKEN is an access token you can create to authenticate at Docker Hub

The release job runs only after the build job successfully pushed the container image
to the registry. It’s goal is to trigger a GitHubWorkflow in the example-environment
repository, which in turn will create the desired pull request. Think of this as
an API call from one GitHub Workflow to another. However, the trigger for the
environment repository is without effect because there is no GitHub workflow
with the name “New Application Version” to trigger, yet. But fear not, we’ll create
that missing workflow now. To do so, copy the GitHub Workflow definition
.github/workflows/newApplicationVersion.yml from the example environment
repository33 in your environment repository. This one is a bit large, but essentially
it takes the arguments from the trigger and updates the deployment manifests (read:
the image tag) accordingly within a pull request in a separate branch.

32https://github.com/gitops-tech/example-application
33https://github.com/gitops-tech/example-environment

30

https://github.com/gitops-tech/example-application
https://github.com/gitops-tech/example-environment

At last, for your pipeline to actually work, you need to generate a personal access token
with the scope repo, and place it as a secret named PERSONAL_ACCESS_TOKEN for both
repositories. This is necessary so that the first workflow can trigger the second one as
well as that the second one can create a pull request.

Let’s try it out! Create a tag with the name v1 in your local example-application
repository and push it:

$ git tag --annotate v1 --message "Release v1"
$ git push

Observe the GitHub Workflow run in your repository on GitHub under the tab
Actions. When the build step finishes, a new container image with the tag v1 was
published at Docker Hub. Go see it yourself! When the release step successfully
finished, go to your environment repository and have a look at the workflow that has
been triggered automatically over there as well. When this step finished, a new pull
request should have popped up in the environment repository, including a change in
the deployment.yaml that reflects the new container image tag. Magical! Merge this
pull request, so we can deploy this application later on.

Congratulations, you set up an Operations on Pull Request workflow, which is already
GitOps!

However, we did not deploy anything yet, which we will do in the next step.

31

Step 4: Flux Installation
The next thing we need to do is to deploy Flux into the Kubernetes cluster. Since Flux
v2, however, Flux is not a single operator anymore. Instead, Flux basically comprises
many operators, components in the language of Flux. But becausewe can deploy those
components together, you can still view it as a single thing for the sake of this tutorial.
The idea is that Flux continuously observes the environment repository, andwhenever
a manifest changes, Flux immediately applies the updated manifests in the cluster.
It is also possible that Flux monitors changes of deployment manifests living in the
respective application repositories. In this tutorial, we will use the possibility to store
allmanifests in one place: the environment repository. If youwould like to know about
advantages and disadvantages on putting your manifest files into the environment or
application repository, read this section of the FAQ: Where should I put deployment
manifests?

Before we can continue, please install the Flux CLI34. Although you could generate all
requiredmanifests with the CustomResourcesmanually and apply them to the cluster
through kubectl by yourself, it’s not advisable. The Flux CLI makes it so much easier
to quickly generate all needed files. That’s why we use it. Furthermore, it comes with
a handy feature as well: you can check whether the Kubernetes Cluster suffices the
needs of running Flux via: flux check --pre.

So let’s start. We want to deploy the Flux components in our cluster with the flux
bootstrap command. This command is very powerful as it doesmost of the bootstrap
work. The only thing for you to do beforehand is to create a personal access token
at GitHub for the repo scope — specifically for Flux. To pass the token securely
to the command, we save it in our local shell like this: export GITHUB_TOKEN=<

your-token >. Because we care about security, forgive us for this plead: Please do
not reuse your tokens, even when multiple ones grant the same permissions as you
should be able to revoke these tokens for each tool or use case separately. One last
thing: justmake sure to replace $GITHUB_USERwith yourGitHub user in the command
below before you execute it.

34https://toolkit.fluxcd.io/get-started/#install-the-flux-cli

32

https://toolkit.fluxcd.io/get-started/#install-the-flux-cli

$ flux bootstrap github \
--owner=$GITHUB_USER \
--repository=example-environment \
--branch=main \
--path=./cluster-config \
--personal

The output of the flux bootstrap command should look like this:

► connecting to github.com
/ repository cloned
+ generating manifests
/ components manifests pushed
► installing components in flux-system namespace
/ install completed
► configuring deploy key
/ deploy key configured
► generating sync manifests
/ sync manifests pushed
► applying sync manifests
◎ waiting for cluster sync
/ bootstrap finished

We now have a running instance of Flux operating your cluster. We can double check
for the deployment of Flux to appear in the flux-system namespace, that was created
automatically.

$ kubectl --namespace=flux-system get deployments

You might have noticed two things happening automatically now. First, Flux has
generated a deploy key for your environment repository on your behalf — chill, this
is fine. And second, because the folks from Weaveworks love Infrastructure as Code,
Flux placed its own Kubernetes manifests inside the environment repository as well,
namely, in the new subdirectory ./cluster-config/flux-system. The file name
prefix gotk indicates that Flux is using it’s GitOps Toolkit35 — a set of APIs and
controllers, under the hood. Neat.

Let’s have a closer look at the options we passed to the flux bootstrap command.
The github argument specifies the code repository provider to be used. With the

35https://toolkit.fluxcd.io/components/

33

https://toolkit.fluxcd.io/components/

path option, we specified that only changes in the cluster-config directory of
the environment repository trigger a pull-based deployment. If we had multiple
environments, such as staging or dev we would either create new directories or a fresh
new repository. This is your choice!

34

Step 5: Pull-based Deployment
Next, we want to deploy our application. We could make this quick and just tell you
to throw your application’s Kubernetes manifests somewhere in the cluster-config
directory of the environment repository and we’d be done. Why? Well, Flux automat-
ically applies anything within that directory automatically.

But we decided to show you the proper way. The way which increases security, observ-
ability and, thus, the ability to debug. The way that makes your setup future proof as
you can follow the same steps even if you decide to put the deployment manifests not
in the environment repository but in the application repository instead.

Let’s dig into it.

For Flux to work, it needs to know

• where the Git repository with the deployment manifests of our application is,
• in which interval it should copy the entire repository to keep track of changes.

In our case, the Git repository with the deployment manifests is the
example-environment repository and we use a 30 seconds pull interval. But
first and foremost, Flux needs access to that Git repository. Because we host our
environment repository privately at GitHub, we need to explicitly grant Flux access
to it. For that we leverage the Flux CLI. The CLI is able to generate an SSH key and
save it as a secret in Kubernetes — so we can later add it as a deploy key to GitHub.
So let’s generate it now.

$ flux create source git applications \
--url=ssh://git@github.com/$GITHUB_USER/example-environment \
--branch=main \
--interval=30s \
--namespace=default

You can see the key in the command’s output. Now, you need to add it as a
deploy key at GitHub in your environment repository’s settings. Name this key
flux-./applications as this key will work for all deployment manifests for all
applications you are defining inside the environment repository. Leave the checkbox
Allow write access unchecked, since Flux only needs to pull our application’s
manifests.

35

Next, as we want to follow Infrastructure as Code paradigm, we need to
create a file that defines our custom resource GitRepository. It has the path
cluster-config/applications/applications-source.yaml. In our case
that location is still within the environment repository, but we could also have
been pointing Flux to an application repository instead. To do so, run the
same CLI command again, but this time with the additional option --export >

./cluster-config/applications/applications-source.yaml like so:

$ flux create source git applications \
--url=ssh://git@github.com/$GITHUB_USER/example-environment \
--branch=main \
--interval=30s \
--namespace=default \
--export > ./cluster-config/applications/applications-source.yaml

The resulting manifest looks like this:

apiVersion: source.toolkit.fluxcd.io/v1beta1
kind: GitRepository
metadata:

name: applications
namespace: default

spec:
interval: 30s
ref:

branch: main
url: ssh://git@github.com/< your-github-username >/example-environment

cluster-config/applications/applications-source.yaml

Next, we create another manifest of the kind Kustomization explicitly for our appli-
cation. It describes where Flux can look for changes of the application’s manifests and
in what interval it is doing that.

apiVersion: kustomize.toolkit.fluxcd.io/v1beta1
kind: Kustomization
metadata:

name: example-application
namespace: default

spec:
interval: 5m0s
path: ./applications/example-application
prune: true

36

sourceRef:
kind: GitRepository
name: applications

validation: client

cluster-config/applications/example-application.yaml

Now, we could create these Kustomization manifests for each of our applications to
deploy. For now, we only have this one. The directory structure of your environment
repository should look like this:

.
├── applications
│ └── example-application
│ ├── deployment.yaml
│ └── service.yaml
└── cluster-config
 ├── applications
 │ ├── applications-source.yaml
 │ └── example-application.yaml
 └── flux-system
 └── [..]

Directory structure of the environment repository

Commit and push the new files.

It might, however, take some time until Flux actually deploys our application. This
is because Flux monitors application manifest changes at a frequency of 5 minutes as
configured in the cluster-config/applications/example-application.yaml. If
you cannot wait you can fire up the following command:

$ flux reconcile source git applications

If there is a change in the default branch, the operator adjusts the cluster state. As
you know, you should restrict the permission on altering deployments directly on the
cluster using kubectl. But if it happens by accident, don’t worry, Flux takes care of it
and reverts any change made on the cluster to match the desired state described in
your code repositories.

So let’s have a look at the applications Flux is aware of as follows.

37

$ watch flux get kustomizations -A
NAMESPACE NAME READY MESSAGE
default example-application True Applied revision: main/...
flux-system flux-system True Applied revision: main/...

Great, we can see that our application is up and running. Before we can, however,
access our deployed application locally, we need to set up a port forwarding rule as
follows.

$ kubectl port-forward deployment/app 8080:8080

Now, we can finally get our “Hello World” response when calling our Go web applica-
tion.

$ curl localhost:8080

Awesome! It always feels good to get this very first “HelloWorld” responsewhen using
a new technology.

38

Wrapping up the Tutorial
So let’s summarizewhatwe did in this tutorial. We’ve created twoGitHub repositories,
the application and the environment repository. We’ve installed and configured Flux
to watch out for changes of the deployment manifests of our application. Since Flux
observes the environment repository, a new deployment is triggered when a manifest
change is merged into the main branch. This manifest update is made by two GitHub
Workflows that act automatically and leverage operations on pull request.

If you want to get even more out of this tutorial, here are a few bonus steps.

• You can add another application repository and add this so Flux deploys it auto-
matically as well. We suggest that you should create a Pirate version of the example
application named named pirate-application which returns “Ahoy world”36.

• You could make changes on your application directly in your cluster using kubectl
e.g. by scaling it up or down. You should observe that Flux reverts this change.
Also try to disable this behavior with the following command: flux suspend

kustomization <name>. This could be helpful, for example, for debugging a
deployment.

• You could set up a workflow with Flux where the application’s deployment mani-
fests live inside the application’s repository. For that, you have to throw away the
GitHub Workflow we set up and, instead, need to make sure that the manifests are
updated for every new release by yourself!

• You could extend the GitHubWorkflow of the environment repository to test your
cluster setup with KinD37. This way, you are truly performing automated testing for
your infrastructure configuration, too. Use this handy GitHub Action for it: KinD
(Kubernetes in Docker) Action38.

36https://lingojam.com/PirateSpeak
37https://kind.sigs.k8s.io/
38https://github.com/marketplace/actions/kind-kubernetes-in-docker-action

39

https://lingojam.com/PirateSpeak
https://kind.sigs.k8s.io/
https://github.com/marketplace/actions/kind-kubernetes-in-docker-action

The Future of GitOps
The future of GitOps lights bright. In November 2020, the GitOps Working Group39

was founded under the umbrella of the Cloud Native Computing Foundation (CNCF)
by the leading companies behind GitOps, namely, Amazon, Codefresh, GitHub, Mi-
crosoft, and Weaveworks. They’ve started working on defining the GitOps princi-
ples40. With so many powerful players behind it, we expect both, the GitOps as a
concept and the GitOps tools from the various vendors to evolve. So stay curious on
what the future might bring. Just keep in mind that there are no silver bullets, and so
GitOps isn’t one either.

39https://github.com/gitops-working-group/gitops-working-group
40https://github.com/open-gitops/documents/blob/main/PRINCIPLES.md

41

https://github.com/gitops-working-group/gitops-working-group
https://github.com/open-gitops/documents/blob/main/PRINCIPLES.md

Resources
So you’ve read our little book and are eager to try out GitOps and learn even more
about it. To help you get started on your journey of becoming an expert in GitOps,
we’ve curated a list of popular GitOps tools as well as articles and videos on GitOps.
Happy learning!

43

GitOps Tools
• ArgoCD41 is a GitOps operator for Kubernetes with a web interface.
• Flux42 is the GitOps Kubernetes operator by the creators of GitOps — Weave-

works43.
• HelmOperator44 is an operator for using GitOps on K8s with Helm in combination

with Flux.
• GitOps Engine45 is a library for creating GitOps tooling for Kubernetes.
• GitOps Toolkit46 is a set of APIs and controllers for creating GitOps tooling for

Kubernetes.
• Gitkube47 is a tool for building and deploying docker images on Kubernetes using

git push.
• JenkinsX48 is a Continuous Delivery solution on Kubernetes with built-in GitOps.
• Terragrunt49 is a wrapper for Terraform50 for keeping configurations DRY, and

managing remote state.
• WKSctl51 is a tool for Kubernetes cluster configuration management based on

GitOps principles.
• werf52 is a CLI tool to build images and deploy them to Kubernetes via push-based

approach.
• codefresh53 provides a GitOps automation platform for Kubernetes apps using

ArgoCD.

Also check out Weavework’s Awesome-GitOps54 for even more pointers.

41https://argoproj.github.io/argo-cd/
42https://docs.fluxcd.io/
43https://www.weave.works/technologies/gitops/
44https://docs.fluxcd.io/projects/helm-operator/en/stable/
45https://github.com/argoproj/gitops-engine
46https://toolkit.fluxcd.io/components/
47https://gitkube.sh
48https://jenkins-x.io/
49https://terragrunt.gruntwork.io/
50https://www.terraform.io/
51https://github.com/weaveworks/wksctl
52https://werf.io/
53https://codefresh.io/
54https://github.com/weaveworks/awesome-gitops

44

https://argoproj.github.io/argo-cd/
https://docs.fluxcd.io/
https://www.weave.works/technologies/gitops/
https://docs.fluxcd.io/projects/helm-operator/en/stable/
https://github.com/argoproj/gitops-engine
https://toolkit.fluxcd.io/components/
https://gitkube.sh
https://jenkins-x.io/
https://terragrunt.gruntwork.io/
https://www.terraform.io/
https://github.com/weaveworks/wksctl
https://werf.io/
https://codefresh.io/
https://github.com/weaveworks/awesome-gitops

Articles on GitOps
• An Inside Look at GitOps55

• GitOps - Operations by Pull Request56

• GitOps: What, Why, and How.57

• What Is GitOps and Why It Might Be The Next Big Thing for DevOps58

• What is GitOps Really?59

• Guide to GitOps60

• GitOps mit Helm und Kubernetes (German)61

• The Essentials of GitOps (DZone RefCard #339)62

55https://devops.com/an-inside-look-at-gitops/
56https://www.weave.works/blog/gitops-operations-by-pull-request
57https://www.reddit.com/r/kubernetes/comments/dc8bfd/gitops_what_why_and_how/
58https://thenewstack.io/what-is-gitops-and-why-it-might-be-the-next-big-thing-for-devops/
59https://www.weave.works/blog/what-is-gitops-really
60https://www.weave.works/technologies/gitops/
61https://www.doag.org/formes/pubfiles/11761447/06_2019-Java_aktuell-Bernd_Stuebinger_Florian_H

eubeck-GitOps_mit_Helm_und_Kubernetes.pdf
62https://dzone.com/refcardz/the-essentials-of-gitops

45

https://devops.com/an-inside-look-at-gitops/
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.reddit.com/r/kubernetes/comments/dc8bfd/gitops_what_why_and_how/
https://thenewstack.io/what-is-gitops-and-why-it-might-be-the-next-big-thing-for-devops/
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/technologies/gitops/
https://www.doag.org/formes/pubfiles/11761447/06_2019-Java_aktuell-Bernd_Stuebinger_Florian_Heubeck-GitOps_mit_Helm_und_Kubernetes.pdf
https://www.doag.org/formes/pubfiles/11761447/06_2019-Java_aktuell-Bernd_Stuebinger_Florian_Heubeck-GitOps_mit_Helm_und_Kubernetes.pdf
https://dzone.com/refcardz/the-essentials-of-gitops

Videos about GitOps
• GitOps - Operations by Pull Request [B] - Alexis Richardson, Weaveworks and

William Denniss, Google63

• Tutorial: Hands-on Gitops - Brice Fernandes, Weaveworks64

• What is GitOps? Next level delivery with Flux and Kubernetes by Rafał
Lewandowski65

63https://www.youtube.com/watch?v=BSqE2RqctNs
64https://www.youtube.com/watch?v=0SFTaAuOzsI
65https://www.youtube.com/watch?v=5zt-jzKHwX8

46

https://www.youtube.com/watch?v=BSqE2RqctNs
https://www.youtube.com/watch?v=0SFTaAuOzsI
https://www.youtube.com/watch?v=5zt-jzKHwX8

About the Authors

Florian Beetz

@fbeetz_

Florian is a software engineer at Lion5. He graduated from
University of Bamberg in 2020 with a Master’s degree
in International Software Systems Science. He became
interested in GitOps when Simon offered a seminar on
Kubernetes as a guest lecturer. Apart from that, he is
interested in cloud computing, clean code, and software
engineering techniques. In his free time, he likes to go rock
climbing in the mountains.

Anja Kammer

@innoq

Anja is a senior consultant at INNOQ and works in devel-
opment teams most of the time. She creates cloud-native
web applications, deployment automation, and CI/CD
workflows in particular. Anja’s focus in talks and articles
is on the topics of DevOps and cloud infrastructure. In
addition to her work as an IT consultant, she is a lecturer
at the HTW Berlin University and teaches the course
‘DevOps and Site Reliability Engineering’.

Dr. Simon Harrer

@simonharrer

Simon is a senior consultant at INNOQ. As part of a team
doing remote mob programming1, he fights everyday for
simple solutions with domain-driven design, fitting archi-
tectures such as microservices or monoliths, and clean
code in Java, Ruby, or even JavaScript. He co-authored
the book Java byComparison2 that helps Java beginners to
write cleaner code through before/after comparisons.

1https://www.remotemobprogramming.org
2https://java.by-comparison.com

47

https://www.remotemobprogramming.org
https://java.by-comparison.com

innoq.com/gitops

The core idea of GitOps is having a Git
repository that contains declarative
descriptions of the infrastructure
currently desired in the production
environment and an automated
process to make the production en-
vironment match the described state
in the repository.

If you want to deploy a new application or
update an existing one, you only need to
update the repository – the automa-
ted process handles everything else.

It‘s like having cruise control for managing
your applications in production.

978-3-9821126-8-8

	Acknowledgments
	Welcome
	What is GitOps?
	Why should I use GitOps?
	Deploy Faster and More Often
	Easy and Fast Error Recovery
	Secure Deployments
	Self-documenting Deployments

	How does GitOps work?
	Environment Repository
	Push-based vs. Pull-based Deployments
	Working with Multiple Applications and Environments
	Preview Environments
	Trunk-based Development vs. Pull Requests

	GitOps vs. …
	DevOps
	BizOps
	NoOps
	CIOps
	SVNOps

	FAQ
	GitOps Quickstart with the Flux Operator on Kubernetes
	Step 1: Application Repository
	Step 2: Environment Repository
	Step 3: Continuous Delivery Pipeline with GitHub Actions
	Step 4: Flux Installation
	Step 5: Pull-based Deployment

	The Future of GitOps
	Resources
	About the Authors

